.ode’s error correcting properties are unchanged but off-
ime correlations are minimized. This code-form supplies
it least a part of the synchronization power which is
supplied by the pilot-tone of the two-channel scheme.
‘n almost all situations of interest, it supplies all that is
1ecessary.

One may generalize from the results of Section 2 to
ay that the power is optimally divided when the prob-
Wbility of a word error given correct synchronization is
squal to the probability of a synchronization error. Con-
iequently, a one-channel system will be called “optimally
self-synchronizable” if its synchronization error probabil-
ty after reception of 82/k words is at most equal to the
synchronized word error probability. That this condition
's satisfied for most situations of interest may be inferred
from Table 1, extracted from Tables 6.2 and 6.3 of
Ref. (10). The table is for orthogonal codes with word error
probability = 10-%. (8*/K)min is the minimum value of
that parameter for which the synchronization error
probability < 10, E {(82/k)min} is the expected value
assuming all code vectors are equally likely, whereas
max {(8°/k)mia} is an absolute upper-bound.

Table 1. Minimum values of {32/k) for which a comma-
free code is optimally self-synchronizable

w = 2¢ E {(3_) } max {(_Ez__) }
k / min k / min
8 10 —
16 8 16
32 5 15
64 3 13
128 ~1 4

The timing variations which exist at the word-
synchronization level are almost always the low-frequency
error, i.e. the “skipping”, of phase-locked loop operating
at the RF carrier or subcarrier level. The rate of this
skipping is usually quite low (Ref. 6), and hence 8%/k is
apt to be several orders of magnitude larger than the
constraint values of Table 1. Knowing this, it is difficult
to envision a design situation in which the synchroniz-
ability of the comma-free code would not be adequate.

6. Discussion

In most channels, the constraint upon both the comma-
free code and the pilot-tone system is the number of
words which the receiving equipment is able to use to
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determine the sync position. Since the comma-free code
provides its own sync after receiving only a small num-
ber of words, while a pilot tone synchronizable in the
same time would require a fairly large fraction of the
available power for sync, the comma-free code would
seem to be preferable in all cases.

However, the self-synchronization property of the
comma-free block codes can only be utilized through
sophisticated receiver processing. If transmitter power is
cheap, and complex receiving equipment expensive, as in
a ground-to-vehicle space telemetry application, a two-
channel system is preferable; but if transmitter power is
severely limited, and the sophisticated receiver process-
ing no problem, as in a vehicle-to-ground telemetry appli-
cation, the one-channel self-synchronizing system is far
more preferable to one using pilot-tone synchronization.

The conclusion is that for a Voyager-class telemetry
system, self-synchronizing codes provide the best syn-
chronization method.

The analysis has assumed that bit timing is known.
Imperfect bit timing causes an identical decrease in the
effective signal strength at both the message detector
and the maximum-likelihood word-timing detector. If “g”
denotes the ratio of the effective signal power to the
true signal power (given the degree of bit-timing uncer-
tainty), a first-order correction for bit timing can be
obtained by substituting “gaP” for the message signal
power and “g(l — a)P” for the maximum-likelihood-
detected pilot-signal power in the foregoing analyses. In
most cases, this would require only slight modification
of the results.

D. A Serial Orthogonal Decoder
R. R. Green
In this article 2 new approach to the decoding problem

for certain block coded communication systems is pre-
sented. A simple and efficient decoder is presented.

Assume that a code word is selected from one of the
97 code words in the dictionary H., where H, is defined
by

H" = Hn—-1 ® Hl
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and

11
m=[1 1]

(® is the symbol for the Kroneck Product). This word is
then transmitted over a channel which adds to it white
Gaussian noise and is then available as a received signal
x(t). If we let = be the time required to transmit each
symbol of the code word, then the time required to
transmit the whole word is T = 2" =. It has been shown
(Ref. 11) that to do optimal decoding we want to find k
such that
1<k<2and ¢y, = max  {c¢;}
j=1, -y 20

where
T
c; :/ x(t)Yhi(¢)dt

and where h;(t) is one of the 2" possible code words
{or one of the 2" rows of H,).

Since h;(t) = == 1 for all ¢ we have

Cc; — iﬂ X; hij
j=1
where
% = / " x(9)dt and ki, is the jth bit of hi(z). So:
(j-1)7

¢ = max {c;}
J=1, 20
= max {(H.x);}
i=1, ceey 20

= max {y;}

=1, -, 20

Lemma 1:

P, = (Ik ® P»—k) (Pku ® In——k—l)

where
y = Hux.

If we assume that the components of the vector x are
available sequentially as 2" g bit serial binary words,
we would like to find a machine which would perform
the operation H,x. However, as this operation requires
2m+1 additions or subtractions, it is rather inefficient and
difficult to mechanize.

Instead, a more efficient and more easily mechanized
procedure is as follows.

Define:
10
R
1000
0010 . . ]
P, = 0100 and inductively;
0001
Pn+1:(11®Pn)(Pz®1n—1) nZ]-
2. R,=H, and inductively;
Rm—l = (P2 ® In"l) (I‘l ® Rn) n Z 1

Note that P, is a 2* X 2* permutation matrix; therefore,
P =PT.
n 7

Similarly P* for any k >1 must be a 2* X 2" permutation
matrix, therefore

By = 2y

=@y

=(B)
Also, the matrix R, has been described by Koerner in
SPS 37-17, Vol. 1V, page 72.

forn—1>k>0

Proof by induction: Trivial for n arbitrary k = 0. True by definition for k = 1.

Assume true for all n >k’ + 1 where k > K >0, prove for k+1foralln>(k+1)+1=k+2

P, = (It @ Pus) (Prer @ Inss)
=L@ (11 @ Pu) (Pe ® Insk-2) ] (Prs @ Inses)
= (It @ Puir) (It @ Po @ In-ks) (Prss @ L)
= (Iins @ Preic) [(Ik @ P2) (P Q 1) @ Sy
= (Ik+1 &P n~k-1> (P %z @ In—k+z)

248



JPL SPACE PROGRAMS SUMMARY NO. 37-39, VOL. IV

Lemma 2:

P (LQPT) = (PT@L)Pry  n2>1

Proof by induction: Trivial for n = 1. For n = 2 see Fig. 8. Assume true forn = k,prove forn =k + 1

M ooooooa]lft o000 00
o000 100 0jfoo1ooo0coo
o 100000 a]fo1000000
P (1.®F, o 0000010 o0flooo 10000
3(] 2)=ﬂoxaoooo g 000 1 000D
o 0oo0o0o0o06 10flooo o o8 10
00019000 0oljooooo o0
booonouLooeouuol
M o 000 o0 o 9
0000 10600
o010 0 00
~loo o000 10
6 1000000
o 0 © 0 0 1 0 0
000 1 00 00
Luoooooo;_
N coo0o0ooalf1o0000ac0
o1 860000 o0flooooi1oooe
s o001 000aljo1o0o00000
> P_000001oo o 000606 120
(2®]|) 3% 1o 0 10000 0ffoo 100000
0 ¢ 01 0 2 0 O 0o 0 0 0 0 0 1 O
o 00009 1 ofjoooe 10000
o oo0oo0o0o00o 1}ffoooo0n o001
— -
1 o000 000
0o 0.0 0 1600
00 100000
a0 00060 10
‘olooooou:P:J)(-[l@Pz)
06000100
0o 60 10000
0o 0000 00 1

Fig. 8. Lemma 2 —n =1

Poo L PL) = (k@ Po) (Pea @ L) (L QP ® L) (s ® P)
= (L@P:) [Pra (LA ) QLI(L:® P2)
=(L @ P2) [(PL QL) Prs @ L] (L @ P:)
= (I @P.) (P ® L) (P Q@ L) (k@ P2)
= (PIQL) (L ®P2) (Prn QL) (I @ P)
(Pr®L) (Ins @ Pa) (B ® L) (1 ® Pz)
= (P QL) (1: ®P:) k@ F:) (BB L)
= (P QL) [ @P: (L P)| (B Q L)
= (PIQL) (lea@P.®L) (1 QPFs) (P ® L)

= (PL, ® L) P

Il

Theorem 1: P% = (Il 03] P’;_l) (P,’;+1 X I,,,_;H) forn—1>k>1
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Proof by induction: True by definition for k = 1. Assume true for k prove for k + 1forn > k + 2:

Pirt = Pt P, = (I, @ P%_) (PL,, @ Lukea) (Ikn @ Prer) (Priz @ Lnss)
= (I @ P%,) (Itix ® Pucir) (PLy ® Lncis) (Piece @ Lnioz)
= (L QP (Tea @ Pus) [(PL, @ L1) Prcz @ Tuie]
= (L @ P} (T ® Pucier) (e @ Incie) (I @ P, @ i)
=(LQPE) (L ®Pur) (P Q L) (L@ P, & ln)
= (LOPY) (Pr. @ Lne)

Corollary: P! = I,

Proof by induction: P! = I,. Assume true for n prove forn + 1:

P:;:; = P::H P’“’l - (Il ® P:‘,) (PT ® IU) Pnu = Iﬂ+1 PT Pi‘H—‘l

n+t n+l

= In+1

Note that P* = I, implies P** = P! = P! .

Lemma3: R, = (P, ® I.s-) (I ® Rau) forn—1>k>0

Proof by induction: Trivial for k = 0, true by definition for k = 1. Assume truefor alln >k’ + 1 wherek > k' >0,
prove fork + 1lforalln > k + 2:

R, = (Pi+1 &® In-k—l) (Ik ® Rn—k)
- (P ,19;1 ® I,kkq) (Ik ® P2 ® In—k—z) ( Ik+1 ® Rn—k—l)
= (P £+2 ® In—k—::) (Ik+1 ® Rn—k—l)

Lemma 4: P, (Rl & In) = (In &R Rl) P forn >1

Proof by induction:
100071010 1010 110071000
0010|0101 1010] |1-100flo010

f :l,Pg R 11 - - - = Il B. Po

orn Ba®L)=107100]]1010 0101l loo11|lo100|” H®R)E
0001]{0101 0101 001-1|]l0001

Assume true for n, prove forn -+ 1:

Pas (Ba @ Lns) = (In @ P2) (Pan ® 1) (Ba @ L)
= ([,QP:) (1. ® R: @ L) (Panr ® L)
= L @R (L@ P2) (Pt @ L)
= (In+1 ® Rl) Pz
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Theorem 2: Rt = (Pt @ Lnser) (I:Q R% ) forn—1>k>1

Proof by induction: True by definition for k = 1. Assume true for k, prove for k -~ 1 forn > k + 2:

REt = Ry RE = (PL, @ Luer) (T @ Rus) (Pot ® L) (1 @ BE,)
= (P @ L) (P ® L) (Prs @ Tak) (T @ Bocen) (1 @ RE)
— (Pes ® Tss) (1 © PL, @ Taee) (PLay @ Tats) (P ® Ticr) (T ® Bovien) (L B
= (Pr: @ Lnics) [ ® (PL, @ Lnis) (I @ Ruir) ] (I @ BE)
= (Pes @ i) (1. ® R (1L ® BE)

= (Prx @ Los) (WO R

Corollary: R* = H,

Proof by induction: R' = H,. Assume true for n, prove for n + 1:
21; - RrHl R:Ll = Rn+l Pn+1 (Il ® R::)
= P1, (L@ R, Pas (L@ Ha)

= P;I;u P"H (HI ®In> (11 ®Hn)
= HN+1

Theorem 3: P* R =1, @ H:, for n>k>1

Proof by induction: P! R! = I, H, = H,. Assume true for Pt R, prove for P% R

n? n+l a+1 "
Pt RE, = (L QP (PL, @ Luk) (Pen ® L) (1 @ Ry
I, ® P’,c,, R’; =1 ® L ® H, = In+1—k® H;

{

and prove for P&t R¥+1.

N+l n+1°

n+1

= Ik ® Pras) (Pt @ Ii) (Lnste @ Hie) (P1,, , @ Ii) (I @ P, (I @ Ro)
- [+ @ P L ® P, ] (L O R)

1@ P @ HPL, (1 O R

1@ Pun (P, R

= L @ P! Rl = L @ Hier

k+1 T k+1

Pl;,:ll R},:,ll - Pn+1 (In+1—k ® Hk) Rn+l = P1z+1 (In+1~k ® Hk) PT (In ® Rl)

Thus we see that if we can build a machine which consists of n stages, the ith one of which, 1 <i <n, performs the
operation P} R, (P )" x, cascading these n stages would give the desired operation of

y = P Ry(Pr-)" Put Ry(P*2)" - P Ry Py PY Ru Pl x
=PrRrx=Rrx=Hx
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For an example of the second stage operation for a
length 8 code, see Fig. 9. One possible mechanization
of a machine to accomplish the job of the ith stage is
shown in Fig. 10, where w;_, is the output of the ith stage
of a binary counter which is pulsed every word time (7).
Thus w;., changes states every 2i* word times, and w;-,
is time to go true as the first component of P R}™
x appears at the ith stage.

Since we add 2" binary numbers of ¢ bits each, the
digital word length must be m > g + n. Since symbols

are received at the rate of 1/ per second, the decoder

must operate at s = m/r bits per second. If we take
both m and s to be fixed, the data rate which the decoder
can handle for an orthogonal code of length 2° is
r = (ns)/{m 2), For example, lettingn = q =7, s = 107
we have r > 35,000 data bits per second.

)
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Fig. 9. Second stage for 8/3 Code

This decoder has several advantages. Since every com-
ponent of y involves all of the 2" components of x, any
decoder must have at least 2* — 1 words of memory.
This decoder involves

g =S gl =g 1
i=1 i=0

words of memory. As is shown in Theorem 8, a decoder
of N stages will decode any code for which N > n > 1,
and, further, if it is desired to expand the decoder to
the case of N + 1, no redesign is needed. To accomplish
the expansion, simply add one more decoding stage and
one more flip-flop to the w counter. The final advantage
is the previously mentioned one of being able to accom-
modate quite high data rates.

2/"1 WORDS
SERIAL
MEMORY

D NAND GATE

SERIAL BINARY ADDER/SUBTRACTER

Fig. 10. ith stage of decoder
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